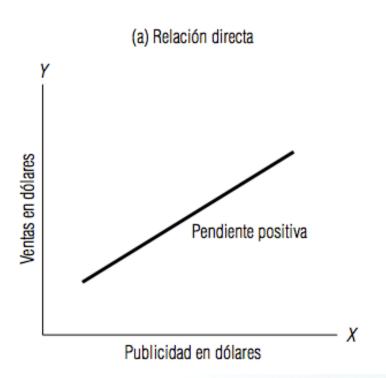


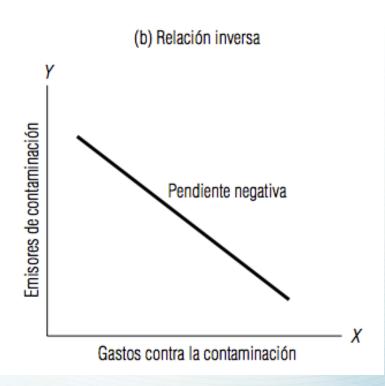
Regresión y Correlación

Los análisis de regresión y correlación nos mostrarán cómo determinar tanto la naturaleza como la fuerza de una relación entre dos variables. De esta forma, aprenderemos a pronosticar, con cierta precisión, el valor de una variable desconocida basándonos en observaciones anteriores de ésa y otras variables.

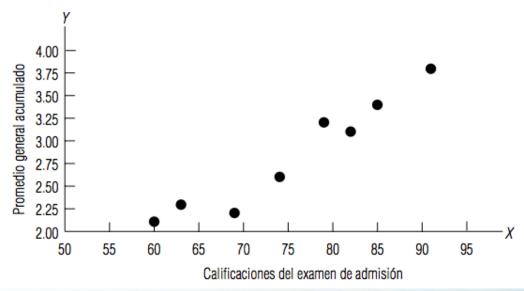
Tipos de relaciones

Los análisis de regresión y de correlación se basan en la relación, o asociación, entre dos (o más) va- riables. La variable (o variables) conocida(s) se llaman *variable(s)* independiente(s); la que tratamos de predecir es la variable dependiente.

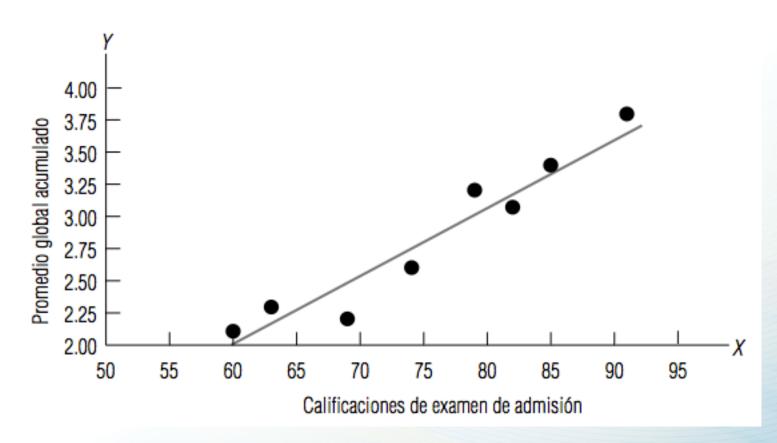


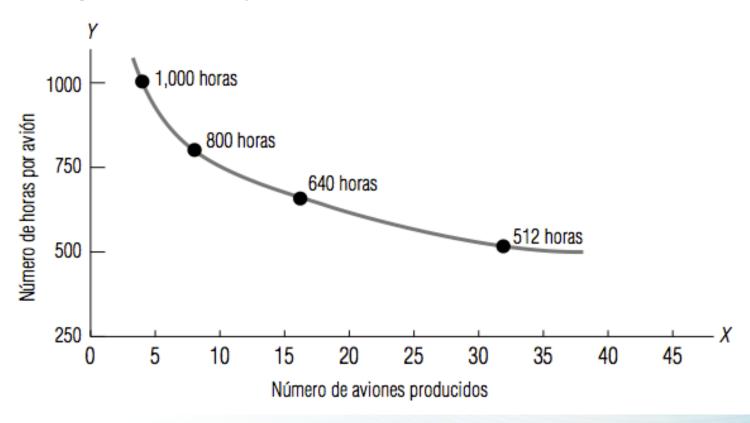


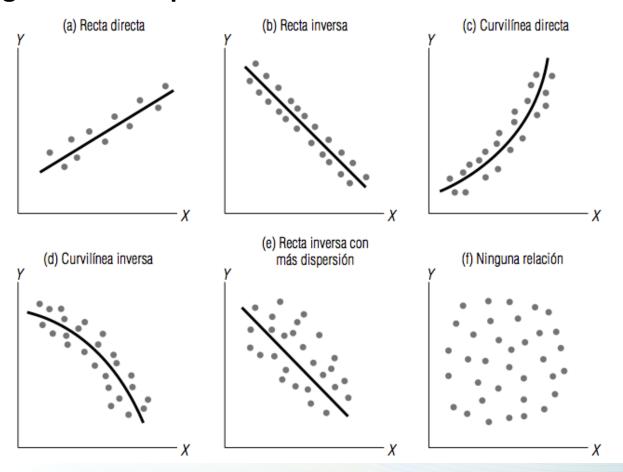
Tipos de relaciones



Estudiante	Α	В	C	D	E	F	G	Н
Calificaciones de examen de admisión								
(100 = máxima calificación posible)	74	69	85	63	82	60	79	91
Promedio general acumulado $(4.0 = A)$	2.6	2.2	3.4	2.3	3.1	2.1	3.2	3.8



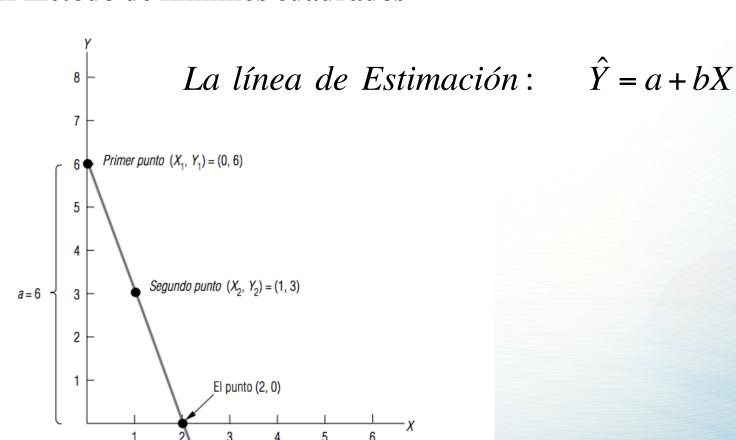




Ejemplo: Un instructor está interesado en saber cómo se relaciona el número de estudiantes ausentes con la temperatura media del día. Usó una muestra aleatoria de 10 días para el estudio. Los siguientes datos indican el número de estudiantes ausentes (AUS) y la temperatura media (TEMP) para cada día.

AUS	8	7	5	4	2	3	5	6	8	9
TEMP	10	20	25	30	40	45	50	55	59	60

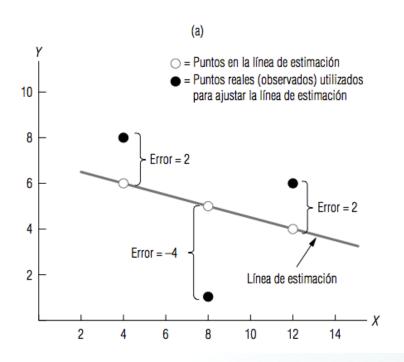
- Establezca la variable dependiente (Y) y la variable independiente (X). а.
- Dibuje un diagrama de dispersión para estos datos. h.
- ¿La relación entre las variables parece lineal o curvilínea?
- ¿Qué tipo de curva puede dibujar a través de los datos? d.
- ¿Cuál es la explicación lógica para la relación observada?

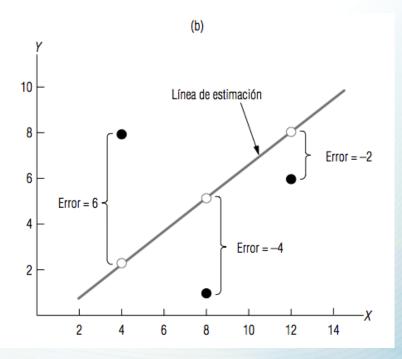


ITM

Institución Universitaria Regresión lineal simple y correlación

El método de mínimos cuadrados





Forma de "medir el error"

Pendiente de la recta de regresión de mejor ajuste

$$b = \frac{\sum XY - n\bar{X}\bar{Y}}{\sum X^2 - n\bar{X}^2}$$

- b =pendiente de la línea de estimación de mejor ajuste
- X = valores de la variable independiente
- Y =valores de la variable dependiente
- \overline{X} = media de los valores de la variable independiente
- \overline{Y} = media de los valores de la variable dependiente
- n = número de puntos (es decir, el número de pares de valores de las variables independiente y dependiente)

Ordenada Y de la recta de regresión de mejor ajuste

$$a = \overline{Y} - b\overline{X}$$

- a = ordenada Y
- b = pendiente de la ecuación
- \overline{Y} = media de los valores de la variable dependiente
- \overline{X} = media de los valores de la variable independiente

Ejemplo: A menudo, quienes hacen la contabilidad de costos estiman los gastos generales con base en el nivel de producción. En Standard Knitting Co. han reunido información acerca de los gastos generales y las unidades producidas en diferentes plantas, y ahora desean estimar una ecuación de regresión para predecir los gastos generales futuros.

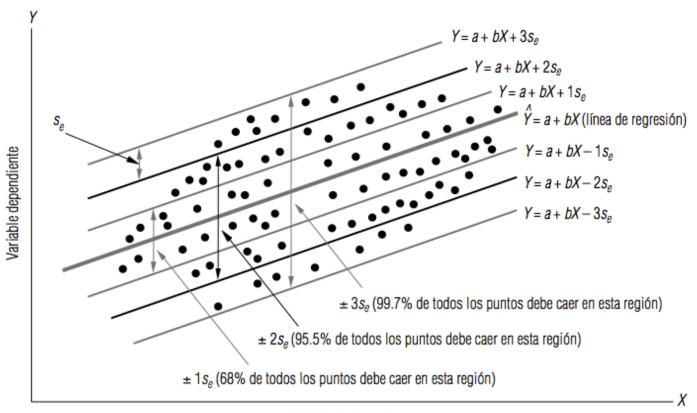
Gastos generales	191	170	272	155	280	173	234	116	153	178
Unidades	40	42	53	35	56	39	48	30	37	40

- dibuje un diagrama de dispersión. a.
- b. Desarrolle una ecuación de regresión para contabilidad de costos.
- Pronostique los gastos generales cuando se producen 50 unidades. c.

Método abreviado para encontrar el error estándar de la estimación

$$s_e = \sqrt{\frac{\sum Y^2 - a\sum Y - b\sum XY}{n - 2}}$$

- X = valores de la variable independiente
- Y = valores de la variable dependiente
- a =ordenada Y de la ecuación 12-5
- b = pendiente de la ecuación de estimación
- n = número de puntos

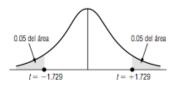


ITM

Institución Universitaria Regresión lineal simple y correlación

 Interpretación del error estándar de la estimación Intervalos de confianza para la estimación

Variable independiente



Áreas combinadas de ambos extremos para formar la distribución f de Student

Ejemplo:					
Ejempio:	Grados de		Area combinada	de ambos extremos	
Para encontrar el valor de t que corresponde a	libertad	0.10	0.05	0.02	0.01
un área de 0.10 en	1	6.314	12.706	31.821	63.657
ambos extremos de la	2	2.920	4.303	6.965	9.925
distribución, cuando	3	2.353	3.182	4.541	5.841
existen 19 grados de	4	2.132	2.776	3.747	4.604
libertad, busque en la	5	2.015	2.571	3.365	4.032
columna encabezada con	6	1.943	2.447	3.143	3.707
0.10 hasta el renglón	7	1.895	2.365	2.998	3.499
correspondiente a 19	8	1.860	2.306	2.896	3.355
grados de libertad; el	9	1.833	2.262	2.821	3.250
valor apropiado de tes	10	1.812	2.228	2.764	3.169
1.729.	11	1.796	2.201	2.718	3.106
	12	1.782	2.179	2.681	3.055
	13	1.771	2.160	2.650	3.012
	14	1.761	2.145	2.624	2.977
	15	1.753	2.131	2.602	2.947
	16	1.746	2.120	2.583	2.921
	17	1.740	2.110	2.567	2.898
	18	1.734	2.101	2.552	2.878
	19	1.729	2.093	2.539	2.861
	20	1.725	2.086	2.528	2.845
	21	1.721	2.080	2.518	2.831
	22	1.717	2.074	2.508	2.819
	23	1.714	2.069	2.500	2.807
	24	1.711	2.064	2.492	2.797
	25	1.708	2.060	2.485	2.787
	26	1.706	2.056	2.479	2.779
	27	1.703	2.052	2.473	2.771
	28	1.701	2.048	2.467	2.763
	29	1.699	2.045	2.462	2.756
	30	1.697	2.042	2.457	2.750
	40	1.684	2.021	2.423	2,704
	60	1.671	2.000	2.390	2.660
	120	1.658	1.980	2.358	2.617
	Distribución normal	1.645	1.960	2.326	2.576

^{*}Tomado de la tabla III de Fisher y Yates, Statistical Tables for Biological, Agricultural and Medical Research, publicado por Longman Group, Ltd., Londres (publicado anteriormente por Oliver & Boyd, Edimburgo) y con licencia de los autores y los editores.

I. de Confianza: $\begin{cases} l\text{imite } s: Y = a + bX + t(s_e) \\ l\text{imite } i: Y = a + bX - t(s_e) \end{cases}$

Ejemplo: Las ventas de línea blanca varían según el estado del mercado de casas nuevas: cuando las ventas de ca- sas nuevas son buenas, también lo son las de lavaplatos, lavadoras de ropa, secadoras y refrigeradores. Una asociación de comercio compiló los siguientes datos históricos (en miles de unidades) de las ventas de línea blanca y la construcción de casas.

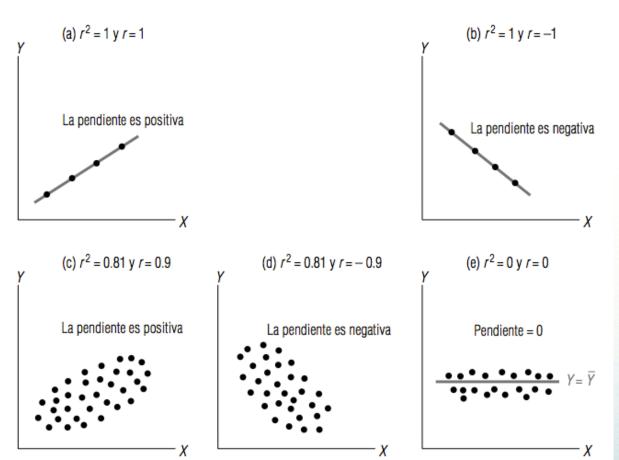
Ventas de línea blanca (miles)
5.0
5.5
6.0
7.0
7.2
7.7
8.4
9.0
9.7
10.0

- Desarrolle una ecuación para la relación entre las ventas de línea a. blanca (en miles) y la construcción de casas (en miles).
- Interprete la pendiente de la recta de regresión.
- Calcule e interprete el error estándar de la estimación.
- d. La construcción de casas durante el año próximo puede ser mayor que el intervalo registrado; se han pronosticado estimaciones hasta de 8.0 millones de unidades. Calcule un intervalo de predicción de 90% de confianza para las ventas de línea blanca, con base en los datos anteriores y el nuevo pronós- tico de construcción de casas.

Coeficiente de determinación muestral r²

$$r^{2} = \frac{a\sum Y + b\sum XY - n\overline{Y}^{2}}{\sum Y^{2} - n\overline{Y}^{2}}$$

- r^2 = coeficiente de determinación de la muestra
- a =ordenada Y
- b = pendiente de la línea de estimación de mejor ajuste
- n = número de puntos de datos
- X = valores de la variable independiente
- Y = valores de la variable dependiente
- \overline{Y} = media de los valores observados de la variable dependiente


ITM

Institución Universitaria Regresión lineal simple y correlación

• Coeficiente de correlación de la muestra

$$r = \sqrt{r^2}$$

Regresión lineal simple y correlación

Ejemplo: Zippy Cola está estudiando el efecto de su última campaña publicitaria. Se escogieron personas al azar y se les llamó para preguntarles cuántas latas de Zippy Cola habían comprado la semana anterior y cuántos anuncios de Zippy Cola habían leído o visto durante el mismo periodo.

X (número de anuncios)	3	7	4	2	0	4	1	2
Y (latas compradas)	11	18	9	4	7	6	3	8

- Desarrolle la ecuación de estimación que mejor ajuste los datos.
- b. Calcule el coeficiente de determinación de la muestra y el coeficiente de correlación.

